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Runing title: Smart Breeding Platform 20 

In the era of big data and artificial intelligence, "smart breeding" has become a broad 21 

conceptual framework encompassing the paradigm shift of crop breeding to relying on 22 

analysis of high-throughput population genetics and phenomics data to conduct genomic 23 

selection, allowing identification and optimal use of the genetic potential in crop species 24 

(Sharma et al., 2022; Xiao et al., 2022; Xu et al., 2022). Most existing tools for analyzing 25 

high-throughput breeding data require extensive computational power, complex installation 26 

processes, and command-line expertise, and are therefore challenging and inconvenient 27 

for the majority of researchers and breeders (Brandies and Hogg, 2021). To overcome 28 

these limitations, we developed Smart Breeding Platform (https://sbp.ibreed.cn), a user-29 

https://sbp.ibreed.cn/


friendly, web-based tool for management and analysis of large-scale genetic, genomic, and 30 

phenomic data. This platform is freely accessible through the internet and allows users to 31 

import data, perform various statistical analyses, and conduct genome-wide association 32 

studies and genomic selection using both classical machine learning and deep-learning 33 

models. It will enable plant breeders to easily conduct the following steps: (1) efficientlyAepm娀ing

 



Graphs can also be customized to show information for only parental lines or progeny. In 60 

instances involving more than one generation, the depth of the visualized pedigree can 61 

also be adjusted. The entire pedigree for a breeding program can be displayed as a 62 

network graph that highlights the most popular lines. 63 

Location module 64 

By default, this table includes the following fields: year, season, breeding station, 65 

location name, longitude, latitude, size (e.g., the number of rows in a field trial), and 66 

environmental factors such as maturity zone, soil characteristics, and agronomic practices. 67 

These data can be used to compare variables between sites and track relevant factors that 68 

may contribute to phenotypic outcomes.  69 



information about the physical location of a trial, multiple experiments from different 90 

breeders can be automatically placed within a single field. The field layout is output as a 91 

table containing the coordinates of each plot within the field. This module also includes 92 

heatmaps, which show the distribution of values for each trait across the field; a stability 93 

analysis, which shows the performance of specific lines across locations; and a testing 94 

history, demonstrating the trials and locations in which a specific line has been tested. 95 

Crossing nursery 96 

The crossing nursery module can be used to plan new lines and pedigrees. The user 97 

selects sets of female and male parental lines. The module then generates a crossing 98 

matrix, with options for user input regarding specific cross combinations (e.g., crossing 99 

patterns) and harvest instructions (for each row or plant). The module auto-generates 100 

inventory entries to be added to the germplasm table and adds the pedigree of each cross 101 

combination to the pedigree record table. 102 

The Test Management section has tools to track experimental locations and plant 103 

research materials (i.e.materialq撀Mऀtterns



2016; Rodriguez-Alvarez et al., 2018). Data can be analyzed separately for each location 120 

or as an integrated dataset including points from all locations. For each genotype, the 121 

module outputs the BLUP and BLUE values of the included traits. Variance components, 122 

heritability, and trait correlations can also be calculated. Entry-mean heritability and plot-123 

mean heritability of each trait are derived from the variance components of random models. 124 

These two metrics can help breeders to assess the precision of trait values both at single-125 

plot level and across locations.  126 

This module also automatically calculates correlations for all pairs of phenotypic traits. 127 

The phenotypic correlation between each pair of traits is calculated as the Pearson 128 

correlation coefficient of the raw phenotypic data, whereas the genetic correlation between 129 

each pair of traits is calculated as the correlation of genetic effects in a model fitting both 130 

traits and residual correlation effects (Muñoz and Sanchez, 2020). Examination of trait 131 

correlations enables breeders to identify traits that can be bred independently (i.e., traits 132 

that have low correlations with other traits) and traits that must be separated or bred jointly 133 

(i.e., traits that have strong positive or negative correlations with other traits). For each 134 

linear model, the goodness of fit and the validity of the residual normality assumption can 135 

be assessed using diagnostic plots, including raw data distribution histograms, residual 136 

histograms, plots showing residual compared to fitted values, and residual Q–Q plots. 137 

Breeders can then select the best lines (those with ideal values across traits) using 138 

scatterplots that display the distribution and correlation of BLUP or BLUE values for pairs 139 

of traits. Overall, this module includes advanced single-trait and multi-trait analyses that 140 

can be conducted in an automated, user-friendly manner.  141 

Genetic variation analysis module 142 

This module can be used to efficiently identify genetic variants based on high-143 

throughput genome sequencing data. In comparison to the standard pipeline for sequence 144 

alignment and germline variant-calling analysis (BWA+GATK) (Yin et al., 2021), the 145 

analysis method used here is significantly faster on our platform, due to the boosted tools 146 

with novel acceleration algorithm on the NVIDIA CUDA platform. Results of the new 147 

method are highly consistent with the standard BWA+GATK pipeline (99.9% accuracy) and 148 

are completed ~100× faster when two NVIDIA Turing T4 graphics cards are used. Inclusion 149 



of additional graphics cards would further improve the processing speed. The sequence 150 

alignment and sequencing depth can be visualized with Integrative Genomics Viewer (IGV) 151 

(Robinson et al., 2011), which has been optimized to load large genome dataset. 152 

Genomic statistical analysis module 153 

This module facilitates analyses of genetic diversity for a specific population. It takes SNP 154 

data as input, either as VCF files produced by the variant-calling module or as user-155 

uploaded HapMap or VCF files. The module outputs some or all of the following 10 156 

population genetics measures as specified by the user: allele frequency values, genotype 157 

frequency values, population divergence (Fst) values, nucleotide diversity values, 158 

population structure results, a kinship matrix, a neighbor-joining tree, unweighted pair 159 

group method with arithmetic mean (UPGMA) clustering results, linkage disequilibrium (LD) 160 

values (r2, D, and D’), and an LD graph. These analyses enable breeders to evaluate 161 

germplasm diversity and select the best lines for future crosses to maintain long term 162 

genetic gain. For example, the neighbor-joining tree (Paradis and Schliep, 2019) and 163 

UPGMA clustering show the genetic similarities among individuals in the population and 164 

enable breeders to assess the genetic diversity in the population. 165 

GWAS analysis module 166 

The GWAS module implements the ‘GAPIT’ R package (Wang and Zhang, 2021) to 167 

identify SNPs underlying phenotypic variations. Phenotype and marker data can be 168 

transferred directly from other modules in the platform or can be uploaded individually by 169 

the user. Seven models from the ‘GAPIT’ package are included: Generalized Linear Model 170 

(GLM), MLM, Compressed Mixed Linear Model (CMLM), Multi-Locus Mixed Model 171 

(MLMM), Settlement of MLM Under Progressively Exclusive Relationship (SUPER), Fixed 172 

and Random Model Circulating Probability Unification (FarmCPU), and Bayesian-173 

information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The user can 174 

define the minor allele frequency (MAF) for filtering SNPs and the number of principal 175 

components (PCs) to include in the model as fixed effects. The output includes genome-176 

wide and single-chromosome Manhattan plots. Manhattan plots can also be generated for 177 

multiple traits to determine whether nearby SNPs control differing traits. Q–Q plots show 178 

the observed compared to the expected (i.e., uniformly-distributed) p-values. Additional 179 



summary graphs show the distributions of traits and markers in the genome and the LD 180 

values between nearby markers. Statistically significant markers are considered strong 181 

candidates for marker-assisted selection (MAS) for desired traits or for fine-mapping to 182 

identify causal genes for a specific phenotype. 183 

Genomic selection analysis module 184 

The genomic selection module is used to predict trait values among inbred lines, 185 

hybrids, or progenies based on molecular markers. It consists of three steps: dataset 186 

formation, training, and prediction. To generate a training dataset, the phenotype and 187 

marker data are uploaded or retrieved from the phenotype analysis module and the variant-188 

calling module. In the dataset formation step, the program calculates the number of 189 

samples with both phenotype and marker data. In the model training step, the user selects 190 

a dataset, trait(s) of interest, and a model. The latter is either a statistical model such as 191 

genomic BLUP (GBLUP) (VanRaden, 2008; Endelman, 2011), a classical machine learning 192 

model, or a deep-learning model. After the model is trained, cross-validation is performed 193 

and the predictive accuracy is displayed. The user can then choose a trained model (e.g., 194 

the model with the highest predictive accuracy) to predict the performance of offspring from 195 

a cross or of the corresponding parental lines. This module yields predicted trait values for 196 

each specified line, allowing a breeder to select lines that are predicted to have optimal 197 

performance and to discard lines with undesirable traits. The breeder can thus select the 198 

most promising potential crosses from many possible combinations, saving time and 199 

resources. The predicted high performance inbreds or hybrids can be directly exported to 200 

a germplasm table for crossing or field evaluation.  201 

Case study 202 

To showcase the Smart Breeding Platform's capabilities, we utilized a rice dataset 203 

(Wang et al., 2018) with 100 varieties, each featuring multi-year, multi-location phenotypic 204 

data (Supplemental Table S1). Germplasm data were uploaded to the "rice100" table in 205 

the Germplasm Management module. The first five varieties advanced to 206 

"Advancement2023." A pedigree table simulated 35 records from ERS470485 and 207 

ERS470543. Three testing locations were added to the Location Management table, each 208 

with 20 rows and 20 ranges (totaling 400 plots). Field testing experiments, rice_2022 and 209 



rice_2023, followed RCBD designs across different locations. Phenotypic data underwent 210 

analysis in the Phenotypic Statistical Analysis module, generating BLUP and BLUE values, 211 

assessing genetic and phenotypic variance, heritability, and trait correlations. 212 

In the Crossing Nursery module, 10 female and 10 male lines produced 28 two-way 213 

crosses. Germplasm data populated the 'Nursery23' table, and pedigree records filled the 214 

respective table. The Genomic Data Management module received the Os-Nipponbare-215 

Reference-IRGSP-1.0 file and paired-end sequencing data. The Genetic Variation Analysis 216 

module conducted variant calling; 100 VCF files merged with criteria (depth > 50, quality 217 



Figure 240 

 241 
Figure 1. Main sections (A) and analysis workflow (B) of the Smart Breeding Platform. 242 

WGS, whole genome sequencing; BLUP, best linear unbiased prediction; SNP, single 243 

nucleotide polymorphism; UPGMA, unweighted pair group method with arithmetic mean; 244 

LD, linkage disequilibrium; and PCA, principal component analysis. 245 
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